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On the basis of the concepts presented in [1,2 I, some problems 

librium and propagation of rectilinear cracks in an anisotropic 
are studied. * 

of equi- 
medium 

1. Fundamental relations. Let us study the motion of an elastic 
anisotropic medium under the conditions of plane strain. The equations 
of motion are 

Here and throughout this paper summation is implied by repeated Greek 
indices having the values of one and two; uia are the components of the 
stress tensor, ui are the components of the displacement vector, xa are 
rectangular Cartesian coordinates, t is the time, and p is the density 
of the medium. For an anisotropic body, where the plane x1x2 is the 
plane of elastic symmetry, the generalized Hooke’ [ 1 

(1.2) 

* The authors would like to take this opportunity to introduce some 

clarification in 12 1. Formula (4.4) should be written in the follow- 
ing form 
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Here 6 . . are components of the strain tensor. The quantities bijPr 
represent ‘{he elastic constants of the material, where 

Thus, in the general case the studied body is characterized by six 
independent constants, which we shall choose to be b,,,,, b,,,,, b,,,,, 
b 1212' b 2122’ & 2222. In the orthotropic body b,,,, = b,,,, = 0. 

For the isotropic body the following is also true: b,,,l = b,,,,, 
b 1122 = b 1111 - %2,2. 

After substitution of (1.2) into (1.1) we obtain the fundamental 
dynamic equation 

(4.3) 

where 6 ij is the Kronecker delta, SO that Lij = Lj i. 

The general solution of the system of equations (1.3) has the form 

u 1 = L,,‘F* - L ‘I? 13 1r 
ua -_ L ‘y 

11 I 
-L ‘1’ Ia a (1.4) 

where the functions VI, and V2 satisfy the equation 

v&La - LlZ2) Y = 0 (1.5) 

For the purposes we have in mind here it is sufficient to study the 
case ‘u, = ‘4, Y2 = 0. ISlow we study in different versions. the mixed 
problem of the dynamic theory of elasticity for the anisotropic half- 
plane, which is stationary in a system of coordinates cl, c2 moving with 
a constant velocity v in the direction of the negative xl-axis: 

Ei = Xi + Vt8il (1.6) 

(as a special case, the static problems are obtained for v = 0). 

In the stationary case, the function Y depends only on <r and c2, and 
does not depend explicitly on time, so that 

aayr 
Lij’J? = Aiioa akaaEp , A ijap = $ (biapj + biajp) - Pv26i&h (1.7) 

and the basic equation (1.5) becomes 
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'Ihe corresponding characteristic equation can be written in the form 

‘Ihe subsequent analysis will be only restricted to the elliptic case, 
where there are no real roots of (1.9). As was shown by Mshnitskii [4 1, 
the static problem always corresponds to the elliptic case. Because of 
continuity considerations, the elliptic quality also holds for suffi- 
ciently small velocities. For an orthotropic body, if the boundary of 
the half-plane is a line of elastic symmetry, bation (1.9) becomes bi- 

where 

Note that in the case of the orthotropic body the roots of 
characteristic equation are not necessarily purely imaginary. 

(1.10) 

the 

Using the method for the static problem of the two-dimensional theory 
of elasticity of an anisotropic medium proposed by Lekhnitskii 15 1, and 
later applied by Galin E6 1 to the problem of the punch which moves along 
the boundary of an isotropic half-plane, we shall write the general 
solution of Equation (1.8) in the form 

y=2ReIFl(z,)+F2(z,)l, a = El + p&a (1.11) 

where F,, F2 are arbitrary analytic functions, and pl, pz, jZI, pz are 
the roots of the characteristic equation. By substituting (1.11) into 
(1.4) and (1.2) we obtain expressions for displacements and stresses of 
the form 

Here the coefficients dij, t?ijk are given by the formulas 
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2. The general problem for the half-plane. Bayleigh sur- 
face waves, The moving punch. 1. Assume that on the boundary of 
the lower half-plane tz < 0 normal and shear stresses, distributed in 
some manner, are applied, and these distributions of stresses move uni- 
formly along the boundary of the half-plane with a velocity v. 

According to Galin [6 I, we introduce the analytic functions 

m 00 

U’1(--)= _z s l FL- U, -iv,, ~(2) = j L!2JL+L - lJ3 - iC_, 
-0.z s--s - (2.1) 

-co 

where o([,I and ~(6~) are the distributions of the normal and shear 
stresses at the boundary, respectively. We have 

r(%rI = 2 Re Iezsl%'(Er) -I- erascPs'tEIN 

s (EL) = 2 Re Iczzlrpr'(EI) i- es~sfpa'(E~If (2.2) 

From this and from (2.1), we obtain 

Qzlrpl'(q 4 kV$,'(~) = -&- w2 (4, %21%'(Z) -I- e.3'32cp3'(z)= y&w (z> 

When we solve this system with respect to &'(r;f and cb,'(z) we find 

(24 

%'Pf = &A les2,ws (4 - eL22M4 1, (~~'(4 = - & l~o?l~'2(~)-~12lU'lt~~I 

where 

A = e121e223 - e223e231 (2.4) 

Differentation of (1.12) with respect to (I and going to the limit as 

e2 = - 0 results in 

where ta,(t,) and lo,(c,f are the limiting values of the functions when 



Cracks in an anisotropic rediur 65 

the points on the abscissa are approached from below, and, according to 
the formulas of ~~otskii-Pl~lj [7 1, are equal to 

U,l(Zl) = v. P. 1 E - ix6 (El), Wg (ZJ = v. p, 7 m - zYctz (El) (2.7) 
--m ---co 

Formulas (2.51, (2.6) and (2.7) 11 a ow us to reduce the stationary 
mixed problem of the dynamic theory of elasticity for the anisotropic 
half-plane to the well-studied Hilbert problem of the theory of analytic 
functions (the methods of solution of the Hilbert problem can be found 
in the monographs of Muskhelishvili [ 8 1 and Gakhov [ 9 1 1. 

In the particular case of the orthotropic body, the boundary of the 
half-plane being a line of elastic symmetry, the quantities 

C -_ d91el~;;UlP2 , Ij = 22 221 -- dzle222 d e 

2nA (2.8) 

are real, even if the roots of the characteristic equation (1.10) are 
not purely imaginary, so that Formula (2.6) becomes 

2. Keeping in mind future usefulness, let us study as an example the 
surface waves at the boundary of an anisotropic half-plane. This problem 
was studied by a number of authors by means of other methods; a review 
and discussion of these papers from one point of view is given by Scholte 
Cl0 I. 

If an instantaneous disturbance is created on the free surface of a 
half-space at rest, then a long time after the creation of this disturb- 
ance, the dilatational waves go to infinity and damp out there. Ihere 
remain only the surface waves (if they exist) which progress, without 
changing their form, along the boundary of the half-space with a constant 
velocity V. 

‘lhe study of the surface waves is a simple case of the general mixed 
problem formulated before. From the condition of the absence of normal 
and shear stresses at the free surface and from Equations (1.13) we find 

Re ~emcpl’(td + ema’ &>I = 0, Re [eazlcP1’ (EJ -/- ezzzql (&)I = 0 (2.10) 

In order to satisfy the boundary conditions (2.10) by non-trivial 
solutions it is necessary to satisfy the following condition: 

A = e121e222 - elzaeznl = 0 (2.1.1‘1 



66 G.I. Barenblatt and G.P. Cherepanov 

Together with the characteristic equation (1.9), relation (2.11) de- 
termines the velocity of propagation of the surface waves, if these 
waves exist. In the case of the orthotropic body, if the boundary of the 
half-space is a plane of elastic symmetry, the characteristic equation 
(1.10) is solved explicitly. By substituting its solution into the 
appropriate equation (2.11) we obtain the equation for the velocity of 
propagation of surface waves in the form 

Here 

(2.12) 

and the quantities L, M, N are the coefficients of the characteristic 
equation (1.10). In the case of the isotropic body we obtain from here 
the ordinary Bayleigh equation 13 1 

--- 

m = $ (2.13) 

where c2 is the velocity of propagation of the deformation waves in the 
body andlv is Poisson’s ratio. Equation (2.13) is known to have a unique 
real root m0 < 1 for - 1 < w < l/2. In the case of a general type of 
isotropy Equations (1.9) and (2.11) give complete values of v*. This 
means that with an arbitrary anisotropy surface waves do not exist. Of 
great interest is the complete analysis of the cases, so far not carried 
out, where Equation (2.12) has a real root, i.e. the cases where surface 
waves exist at the boundary of the orthotropic body. Note that from the 
existence proof of a unique positive root of the Bayleigh equation 111 1 
and from the continuity expressions follows directly the existence of a 
unique positive root of Equation (2.12) for slightly anisotropic bodies. 

3. As a second example, let us study the problem of the punch which 
moves along the boundary 5, = 0 of an anisotropic elastic half-plane, 
taking into account Coulomb friction at the boundary of contact of the 
punch and the body. The boundary conditions for this problem have, of 
course, the form 

where a and b are the coordinates of the boundary points of the line of 
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contact of the punch and the half-plane, k is the coefficient of Coulomb 
friction, f(t) is a function describing the form of the punch, and P is 
the force pressing the punch against the body. The corresponding bound- 
ary conditions of the Hilbert problem for the determination of the func- 
tion w,(z) = roz(z)/k are found from Formulas (2.6) and (2.7) to be 

1’1 =O (--<&<a, t,<El<oc) 

Re ((C $ ikD) zcl (El)} = /’ (El) (a < Al< b) (2.15) 

‘lhe parameters C and D, which are determined from the expressions 
(2.8) are complex in the case of anisotropy of the general form. We de- 
termine the constants p and q from the relations 

Re(C+ikD)= I, 
“p1 

Im (C + ikD) =, $, (2.16) 

Then the second condition of (2.15) can be rewritten in the form 

~cpf’ (Ed = u, + W’-, (2.17) 

so that for the determination of the function w,(z) we obtain the same 
boundary problem as in the case of the punch which moves along an iso- 
tropic half-plane [6 1. ‘III e solution of this boundary-value problem can 
be found in 161. By using Formulas (1.12) and expressing the functions 
qSj’(z) in terms of w,(z) by means of Formulas (2.3), one can write the 
stresses in the elastic body in the form 

where Q, is some function which remains finite as the speed of the punch 
approaches the speed of the Rayleigh waves, if such waves exist, whereas 
the quantity A, which is determined from Equation (2.41, tends at the 
same time to zero. Thus, just as in the case of the isotropic body 112 I, 
when the speed of motion of the punch approaches the speed of the surface 
waves, if such waves exist, unusual resonance phenomena appear, which 
are connected with the unlimited growth of the stresses in the elastic 
body. Actually, this is connected with a radical change of the motion at 
near-Rayleigh velocities,,which limits the statement of the present prob- 
lem in terms of sub-Rayleigh velocities. If the character of the aniso- 
tropy is such that surface waves do not exist, then the resonance does 
not appear and the adopted formulation of the problem as well as the 
method of solution are applicable up to the maximum velocities, which 
requires an elliptic form for Equation (1.8). 

3. lhe isolated rectilinear crack in an orthotropic body. 
Izt us study the isolated rectilinear crack in an orthotropic infinite 
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body under the conditions of plane strain, which propagates along some 
line of elastic symmetry which we shall call x1. ‘Ihe crack is maintained 
in the open state by some system of loads which is symmetric with respect 
to the xl-axis. Completely analogously to the corresponding analysis for 
the isotropic body [l 1 it is sufficient to study the case where the 
crack is maintained by sytmnetric normal stresses - p(x,), which are equal 
in magnitude and opposite in direction to the tearing stresses p(x,), 
which would exist in place of the crack in a continuous body. It is 
natural to assume the crack to be fixed regardless of the fact that the 
relations given below yield a solution for the problem of a crack moving 
with a constant velocity v and only as a special case, for a fixed crack. 
‘Ihe problem of a moving crack of fixed length in a uniform field was 
studied for the isotropic body by Yoffe [ 13 I; however, even the state- 
ment of such a problem appears to be physically unrealistic. 

The problem studied here is symmetric with respect to the crack line, 
and thus it is sufficient to analyse only the lower half-plane c2 G 0. 
‘l’he corresponding boundary-value problem of the theory of elasticity for 
the lower half-plane cz< 0 is formulated in the following fashion: 

Here -g(tl) is the distribution of the acting loads and forces of 
cohesion. In the case at hand the function w,(z) is identically equal to 
zero. From the relations (2.6), (2.7), and (3.1) we obtain the boundary 
conditions of the Hilbert problem for the determination of the function 

to+): 

(3.2) 

For the orthotropic body and a crack that propagates along a line of 
elastic symmetry, the constant C, given by Formula (2.8), is real, and 
can thus be cancelled. For the determination of the function w,(z) the 
same boundary problem is obtained as in the case of the isotropic body. 
The difference appears only later in the expressions for the stresses 
and displacements. According to the Keldysh-Sedov formula [7 I, we have 

1 
0 

WI (‘) =: -- Jf(: _ a)(z _ b) 
r/(t - a)(t - b) g(t) dt 

t -- : 

Ihe fundamental hypotheses on the smallness and the autonomy of the 
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end region of the crack, where forces of molecular cohesion are acting 

[1,2 I, and the condition of finite stresses at the ends of the crack 

can be applied in the present case just as in the case of the isotropic 

body. 'Ibus, similarly to [l I, the condition which determined the posi- 

tion of the ends of the cracks is valid, i.e. the tearing stress uz2 

near the end of the crack, computed disregarding the forces of molecular 

cohesion, approaches infinity as 

(3.4) 

Here s is the distance from the end of the crack, K is the cohesion 
modulus [l I, 'G(t) is the distribution of the forces of molecular cohesion 

in the end region of the crack, where these forces are acting, and d is 
the longitudinal dimension of the end region. 

Condition (3.4) holds for all equilibrium cracks in the orthotropic 

bodies, which lie along the line of elastic synrnetry. Note that in con- 

trast to the case of the isotropic body, the value of the constant k de- 
pends on which of the planes of elastic symnetry the crack lies on. 

In particular, in the present case of the isolated equilibrium crack, 

the conditions which determine the ends of the cracks a and b have 
form 

e I/ b 

p(t) sdt=K1/b-a, \p(t)I/;Gdt=Kl/b-- 
R a 

Superficially, these conditions coincide with the corresponding 

ditions for the isotropic body [l 1. The difference appears in the 

con- 

fact 

that with an application of tearing stresses inside the body instead of 

at the surface of the crack, the distribution p(x,) for the anisotropic 

body differs considerably from the distribution for the isotropic body. 

Further, the cohesion modulus K depends on the direction of the crack. 
Note that the problem of the isolated rectilinear crack in an anisotropic 

body was studied by Stroh [14 1. However, because of his complicated 

energy approach, Stroh did not obtain a final solution. 

the 

(3.5) 

4. The cleavage of an anisotcnpic body. 1. Assume that an 
orthotropic body with planes of elastic sywetry and parallel axes nr 

and x2 is wedged open under the conditions of plane strain by a thin, 

absolutely rigid, infinite wedge which moves with a constant velocity v 

in the direction of the negative xl-axis. In front of the wedge a free 

crack is formed. We choose as the origin of the coordinate system the 

point of closure of the crack (see figure). Coulomb friction forces are 
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acting at the surface of contact of the wedge and the splitting body. 

Because of the symmetry of the problem with respect to the cl-axis 
one can study the motion in only the lower half-plane 5, Q 0. ‘Ihe fact 
that the wedge is thin allows us to bring the boundary conditions down 
to the cl-axis. Thus, the boundary conditions of the corresponding mixed 
problem of the dynamic theory of elasticity for the lower half-plane can 
be represented in the following manner: 

Here k is the Coulomb friction coefficient, f(t) is a function de- 
scribing the form of the wedge in a system of coordinates with its 
origin at the forward point of the wedge, I, is the distance from the 
forward point of the wedge to the end of the crack, and I, is the dis- 
tance from the initial point of contact of the crack with the wedge to 
the end of the crack. Using Formulas (2.7) and (2.91, we obtain for the 
determination of the function ~~(2) the following boundary-value problem: 

If function q(z) is known, then the determination of function We 
in the given case is elementary. Let us recall that for the present con- 
ditions the constants C and D, which are given by Equations (2.8), are 
real. If one introduces the notation 

(4.3) 

then the boundary-value problem (4’.2) coincides with the corresponding 
boundary-value problem which was solved earlier in the study of the 
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cleavage of an isotropic body [12 I. An analysis of additional conditions, 

which determine the constants entering into the solution of the elasti- 

city problem, shows that in the solution of the problem of cleavage of 

an orthotropic body one can utilize the formulas from [12 1 by choosing 
in these formulas values of p and q which were determined by relation 

(4.3), and keeping in mind that the modulus of cohesion of the material 

depends on the direction in which the cleavage proceeds. 

2. ILet us look in greater detail at the important problem of the 

splitting of an orthotropic body by means of an imnobile wedge of con- 

stant thickness 2h, neglecting the forces of friction at the sides of 

the wedge. 

Using the results of [12 I, we obtain the following expression for 

the length I = 1, = 1, of a free crack before the wedge: 

j-E_ h” __.- 
K2 +?CoZK” (4.4) 

where C, is the value of the constant C given by Formula (2.8) at v = 0. 

We have: according to (2.8) and (1.14) 

where tl and c2 are the roots of the characteristic 

vided by i. Their values depend only on the elastic 

material 

El = 
MO - tiMOa - GINO 

‘LO 

Relation (4.4) can be utilized 

the cohesion modulus, as was done 

wedge of constant thickness, made 

than that of the one under study, 

(4.5) 

equation (1.10) di- 

constants of the 

for an experimental determination of 

in [l I for the isotropic body. A thin 

of a material considerably more rigid 

is driven into a small plate made of 

the material in question, which is sufficiently thick for the state of 

stress in it to be assumed to be that of plane strain. lhe wedge should 

be driven in until the distance from the end of the wedge to the end of 

the crack I remains constant, which will indicate that the influence of 

the ends of the plate is insignificant. l3y measuring 1 and knowing the 

elastic constants of the material we can find the cohesion modulus by 

means of the formula 
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In the case of an isotropic body we obtain the previously known re- 
sult 

Note that the realization of this experiment in anisotropic materials 
is simpler than in isotropic ones, since the cracks bend more readily in 
the latter. 

3. &!t us return now to the dynamic problem. As was shown in [12 I, 
the length of the free part of the crack I, tends to zero for p + 0. But 
from Formulas (4.3) and (2.8) it follows that p is proportional to the 
determinant h and tends to zero when the velocity v of the wedge 
approaches the speed of the Rayleigh surface waves corresponding to the 
given direction, if such waves exist. Thus, the length of the free part 
of the crack tends to zero as the velocity of motion of the wedge 
approaches the Rayleigh velocity; and thus, just as in the isotropic 
case, the velocity of propagation of a crack cannot exceed the Rayleigh 
velocity, 

It can be shown completely analogously to Cl2 ] that when approaching 
the Rayleigh velocity the stresses near the end of the crack increase, 
at which time the tearing stress all g rows faster then the tearing stress 

O22’ This shows that when the speed of motion of the wedge approaches 
the Rayleigh velocity transverse cracks appear and the picture of motion 
changes considerably. Thus, the present statement of the problem is known 
to be applicable only for velocities of wedge motion below the Payleigh 
velocity. 

Ihe upper velocity limit to which the formulation of the cleavage 
problem adopted in this paper applies, also depends on the ratio of the 
cohesion moduli in the direction of splitting and in the direction per- 
pendicular to that. For the crack to be rectilinear it is necessary that 
this ratio be not greater than unity. Otherwise the crack in front of 
the wedge will curve under the influence of incidental factors even with 
a motionless wedge. In the frequently encountered case when the cohesion 
modulus in the direction of the cleavage is considerably smaller than 
the cohesion modulus in the transverse direction (as, for instance, in 
the splitting of wood along the fiber) one can assume the rectilinearity 
of the crack to be assured and the accepted formulation of the problem 
to be correct up to the wedge velocity equal to the Rayleigh velocity. 
If the cohesion moduli in the direction of the cleavage and in the trans- 
verse direction are equal to each other, then one can show completely 
analogously to the isotropic case that there exists still another sub- 
Rayleigh critical velocity, up to which the direction of the cleavage 
lies along the line of maximum tearing stresses. When this velocity is 
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exceeded, then the crack will begin to curve. 
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